Low-power microwaves destroy malaria parasites in blood

19 August 2011

Penn State University materials scientists and medical researchers have demonstrated that low-power microwaves can destroy malaria parasites in the blood. The research is being supported with a Phase II grant from the Bill and Melinda Gates Foundation.

Dinesh Agrawal, professor of materials, and Jiping Cheng, senior research associate in the Penn State Materials Research Institute, are working with Penn State College of Medicine researchers and researchers at INDICASAT-AIP, Panama, and at Clarkson University, NY, to test the microwave treatment in vitro and in mice models.

“The first phase successfully demonstrated that the way microwaves heat the malaria parasite causes it to die without harming normal blood cells,” says Agrawal, who is director of the Microwave Processing and Engineering Center and an authority on microwave engineering. “Microwave interactions are unique. The parasite has extra iron ( Fe3+) that enhances the microwave energy absorption by the parasite. As a result, it is postulated that the parasite gets heated preferentially and is killed without affecting the normal blood cells.”

Malaria continues to kill nearly a million people worldwide each year, the large majority of them children under five. Recent reports from Cambodia suggest that currently effective antimalarial drugs are beginning to lose their effectiveness as the most virulent malaria strain develops resistance.

The first phase tested the microwave process in a laboratory culture. The second phase will use a larger system and test the process in mouse models. If those tests are successful, Agrawal says, the next step will be to design and build a system to treat human beings. Part of that work will be done at Penn State and part at Clarkson University. “That could be revolutionary,” Agrawal says. “A human size device might look like the scanners at the airport.”

More information

The Grand Challenges Explorations is an initiative of the Bill and Melinda Gates Foundation that allows for research that is typically too bold to attract funding from other sources. Website: www.gatesfoundation.org

 

To top