UTAS chooses ADI Blackfin processors for patient monitoring and diagnostics devices

2 October 2009

Patient  monitoring and diagnostics device manufacturer UTAS has selected Analog Devices' Blackfin processors to ensure high-performance digital signal processing operations and robust functionality across its full line of products.

Leveraging Blackfin’s performance, low power consumption and flexible peripheral connectivity alongside complementary precision analogue components also from ADI, UTAS achieved high-performance operations and a seamlessly connected signal chain in a cost effective, compact system package.

“Medical professionals depend on UTAS’ equipment to get a clear view of patient data, which enables them to make timely, more informed patient care decisions,” said Valeriy Tkachenko, Technical Director, UTAS Company. “With Blackfin at the heart of our patient monitoring and diagnostics systems, we are assured a powerful, flexible processor platform for our system designs, and our users are assured unmatched digital signal processing performance for precise measurement of patients’ vital signs.”

UTAS’ electrocardiographs, patient monitors, and pulse oximeters are distinguished by their measurement precision, reliability and affordability, and feature compact form factors and support for battery operations to ensure ease of portability. Utilized in hospitals, clinics, and emergency vehicles in more than twenty-five countries around the world, UTAS’ systems are designed for use across a broad range of patient care applications, including surgery, cardiology, intensive care, bedside care, and patient transport.

The UM 300 patient monitor leverages a dual-core Blackfin BF561 for centralized digital signal processing — real-time digital filtering, preprocessing and finish processing — as well as to control the system’s measurement virtualization capabilities and its video interface, which enables simultaneous viewing of up to eight real-time waveforms via a high-resolution colour display.

Blackfin BF561 is a symmetric multiprocessing configuration of two Blackfin cores, each of which is capable of operating at up to 600 MHz/1200 MMACS with 2.6 Mb of on-chip SRAM memory. Extremely high bandwidth is provided by the 32-bit external port and dual 16-channel DMA controllers. With two Blackfin cores integrated within the BF561 architecture, UTAS was afforded significant space savings which further helped to minimize design complexity and realize the UM 300’s compact form factor.

The Blackfin BF561 features on-chip, application-tuned peripherals that provide direct connectivity to an ADI AD7190 sigma-delta analogue-to-digital converter (ADC) and AD7689 PulSAR ADC within the UM 300. The system also utilizes ADI AD8605 single-supply operational amplifiers, AD8220 junction field effect transistor (JFET) input instrument amplifiers, an ADP3335 precision voltage regulator, and an ADuM2401 iCoupler quad-channel digital isolator, comprising a seamlessly interconnected, high-performance component platform.

Blackfin processors are equipped with a range of innovative architectural features that reduce their power consumption at both the processor level and the system level, including a self contained dynamic power management scheme whereby the operating frequency and voltage can be independently manipulated to meet the performance requirements of the algorithm currently being executed.

With power consumption starting as low as 0.15 mW/MMAC at 0.8 V, Blackfin’s low-power features enabled UTAS’ system designers to maximize the UM 300’s battery life, which is a critical factor for enabling portable operation.

“Medical equipment developers employ some of the most stringent standards in the electronics industry when selecting the components that will underpin their systems,” said Colin Duggan, product line director, GPDSP division, Analog Devices. “UTAS’ new UM 300 patient monitor is just the latest example of how Analog Devices is delivering high performance, feature-rich signal processing technology to enable advanced medical systems designs.”

Bookmark this page

To top